240 research outputs found

    Changing antiepilepsy drug-prescribing trends in women with epilepsy in the UK and Ireland and the impact on major congenital malformations

    Get PDF
    Objectives: After 20 years of data collection, pregnancy registers have informed prescribing practice. Various populations show trends for a reduction in valproate prescribing, which is associated with an increased risk of anatomical teratogenesis and neurodevelopmental effects in those exposed in utero. Our aim was to determine if any shifts in prescribing trends have occurred in the UK and Ireland Epilepsy and Pregnancy Register cohort and to assess if there had been any change in the overall major congenital malformation (MCM) rate over time. Methods: The UK and Ireland Epilepsy and Pregnancy Register, a prospective, observational, registration and follow-up study established in 1996, was used to determine the changes in antiepileptic drugs (AEDs) utilised during pregnancy and the MCM rate between 1996 and 2016. Linear regression analysis was used to assess changes in AED utilisation, and Poisson regression was used for the analysis of trends in the MCM rates. Results: Outcome data for 9247 pregnancies showed a stable percentage of monotherapy to polytherapy prescribing habits over time. After Bonferroni correction, statistically significant (p<0.003) changes were found in monotherapy prescribing with increases in lamotrigine and levetiracetam and decreases in valproate and carbamazepine use. Between 1996 and 2016, the total MCM rate showed a 2.1% reduction per year (incidence risk ratio 0.979 (95% CIs 0.956 to 1.002) but Poisson regression analysis showed that this was not statistically significant p=0.08). Conclusion: Significant changes are seen in the prescribing habits in this cohort over 20 years, but a statistically significant change in the MCM rate was not detected. This work should be replicated on a larger scale to determine if significant changes are occurring in the MCM rate, which would allow a robust economic estimate of the benefits of improvements in prescribing practice and the personal effect of such changes

    Heritability of subcortical volumetric traits in mesial temporal lobe epilepsy.

    Get PDF
    OBJECTIVES: We aimed to 1) determine if subcortical volume deficits are common to mesial temporal lobe epilepsy (MTLE) patients and their unaffected siblings 2) assess the suitability of subcortical volumetric traits as endophenotypes for MTLE. METHODS: MRI-based volume measurements of the hippocampus, amygdala, thalamus, caudate, putamen and pallidium were generated using an automated brain reconstruction method (FreeSurfer) for 101 unrelated 'sporadic' MTLE patients [70 with hippocampal sclerosis (MTLE+HS), 31 with MRI-negative TLE], 83 unaffected full siblings of patients and 86 healthy control subjects. Changes in the volume of subcortical structures in patients and their unaffected siblings were determined by comparison with healthy controls. Narrow sense heritability was estimated ipsilateral and contralateral to the side of seizure activity. RESULTS: MTLE+HS patients displayed significant volume deficits across the hippocampus, amygdala and thalamus ipsilaterally. In addition, volume loss was detected in the putamen bilaterally. These volume deficits were not present in the unaffected siblings of MTLE+HS patients. Ipsilaterally, the heritability estimates were dramatically reduced for the volume of the hippocampus, thalamus and putamen but remained in the expected range for the amygdala. MRI-negative TLE patients and their unaffected siblings showed no significant volume changes across the same structures and heritability estimates were comparable with calculations from a healthy population. CONCLUSIONS: The findings indicate that volume deficits for many subcortical structures in 'sporadic' MTLE+HS are not heritable and likely related to acquired factors. Therefore, they do not represent suitable endophenotypes for MTLE+HS. The findings also support the view that, at a neuroanatomical level, MTLE+HS and MRI-negative TLE represent two distinct forms of MTLE

    MicroRNA inhibition using antimiRs in acute human brain tissue sections

    Get PDF
    Antisense inhibition of microRNAs is an emerging preclinical approach to pharmacoresistant epilepsy. A leading candidate is an "antimiR" targeting microRNA-134 (ant-134), but testing to date has used rodent models. Here, we develop an antimiR testing platform in human brain tissue sections. Brain specimens were obtained from patients undergoing resective surgery to treat pharmacoresistant epilepsy. Neocortical specimens were submerged in modified artificial cerebrospinal fluid (ACSF) and dissected for clinical neuropathological examination, and unused material was transferred for sectioning. Individual sections were incubated in oxygenated ACSF, containing either ant-134 or a nontargeting control antimiR, for 24 h at room temperature. RNA integrity was assessed using BioAnalyzer processing, and individual miRNA levels were measured using quantitative reverse transcriptase polymerase chain reaction. Specimens transported in ACSF could be used for neuropathological diagnosis and had good RNA integrity. Ant-134 mediated a dose-dependent knockdown of miR-134, with approximately 75% reduction of miR-134 at 1 μmol L-1 and 90% reduction at 3 μmol L-1 . These doses did not have off-target effects on expression of a selection of three other miRNAs. This is the first demonstration of ant-134 effects in live human brain tissues. The findings lend further support to the preclinical development of a therapy that targets miR-134 and offer a flexible platform for the preclinical testing of antimiRs, and other antisense oligonucleotide therapeutics, in human brain

    Role of Common Genetic Variants for Drug-Resistance to Specific Anti-Seizure Medications

    Get PDF
    Objective: Resistance to anti-seizure medications (ASMs) presents a significant hurdle in the treatment of people with epilepsy. Genetic markers for resistance to individual ASMs could support clinicians to make better-informed choices for their patients. In this study, we aimed to elucidate whether the response to individual ASMs was associated with common genetic variation.Methods: A cohort of 3,649 individuals of European descent with epilepsy was deeply phenotyped and underwent single nucleotide polymorphism (SNP)-genotyping. We conducted genome-wide association analyses (GWASs) on responders to specific ASMs or groups of functionally related ASMs, using non-responders as controls. We performed a polygenic risk score (PRS) analyses based on risk variants for epilepsy and neuropsychiatric disorders and ASM resistance itself to delineate the polygenic burden of ASM-specific drug resistance.Results: We identified several potential regions of interest but did not detect genome-wide significant loci for ASM-specific response. We did not find polygenic risk for epilepsy, neuropsychiatric disorders, and drug-resistance associated with drug response to specific ASMs or mechanistically related groups of ASMs.Significance: This study could not ascertain the predictive value of common genetic variants for ASM responder status. The identified suggestive loci will need replication in future studies of a larger scale

    Association of ultra-rare coding variants with genetic generalized epilepsy : A case–control whole exome sequencing study

    Get PDF
    Publisher Copyright: © 2022 The Authors. Epilepsia published by Wiley Periodicals LLC on behalf of International League Against Epilepsy.Objective: We aimed to identify genes associated with genetic generalized epilepsy (GGE) by combining large cohorts enriched with individuals with a positive family history. Secondarily, we set out to compare the association of genes independently with familial and sporadic GGE. Methods: We performed a case–control whole exome sequencing study in unrelated individuals of European descent diagnosed with GGE (previously recruited and sequenced through multiple international collaborations) and ancestry-matched controls. The association of ultra-rare variants (URVs; in 18 834 protein-coding genes) with epilepsy was examined in 1928 individuals with GGE (vs. 8578 controls), then separately in 945 individuals with familial GGE (vs. 8626 controls), and finally in 1005 individuals with sporadic GGE (vs. 8621 controls). We additionally examined the association of URVs with familial and sporadic GGE in two gene sets important for inhibitory signaling (19 genes encoding γ-aminobutyric acid type A [GABAA] receptors, 113 genes representing the GABAergic pathway). Results: GABRG2 was associated with GGE (p = 1.8 × 10−5), approaching study-wide significance in familial GGE (p = 3.0 × 10−6), whereas no gene approached a significant association with sporadic GGE. Deleterious URVs in the most intolerant subgenic regions in genes encoding GABAA receptors were associated with familial GGE (odds ratio [OR] = 3.9, 95% confidence interval [CI] = 1.9–7.8, false discovery rate [FDR]-adjusted p =.0024), whereas their association with sporadic GGE had marginally lower odds (OR = 3.1, 95% CI = 1.3–6.7, FDR-adjusted p =.022). URVs in GABAergic pathway genes were associated with familial GGE (OR = 1.8, 95% CI = 1.3–2.5, FDR-adjusted p =.0024) but not with sporadic GGE (OR = 1.3, 95% CI =.9–1.9, FDR-adjusted p =.19). Significance: URVs in GABRG2 are likely an important risk factor for familial GGE. The association of gene sets of GABAergic signaling with familial GGE is more prominent than with sporadic GGE.Peer reviewe

    Testing for pharmacogenomic predictors of ppRNFL thinning in individuals exposed to vigabatrin

    Get PDF
    BACKGROUND: The anti-seizure medication vigabatrin (VGB) is effective for controlling seizures, especially infantile spasms. However, use is limited by VGB-associated visual field loss (VAVFL). The mechanisms by which VGB causes VAVFL remains unknown. Average peripapillary retinal nerve fibre layer (ppRNFL) thickness correlates with the degree of visual field loss (measured by mean radial degrees). Duration of VGB exposure, maximum daily VGB dose, and male sex are associated with ppRNFL thinning. Here we test the hypothesis that common genetic variation is a predictor of ppRNFL thinning in VGB exposed individuals. Identifying pharmacogenomic predictors of ppRNFL thinning in VGB exposed individuals could potentially enable safe prescribing of VGB and broader use of a highly effective drug. METHODS: Optical coherence topography (OCT) and GWAS data were processed from VGB-exposed individuals (n = 71) recruited through the EpiPGX Consortium. We conducted quantitative GWAS analyses for the following OCT measurements: (1) average ppRNFL, (2) inferior quadrant, (3) nasal quadrant, (4) superior quadrant, (5) temporal quadrant, (6) inferior nasal sector, (7) nasal inferior sector, (8) superior nasal sector, and (9) nasal superior sector. Using the summary statistics from the GWAS analyses we conducted gene-based testing using VEGAS2. We conducted nine different PRS analyses using the OCT measurements. To determine if VGB-exposed individuals were predisposed to having a thinner RNFL, we calculated their polygenic burden for retinal thickness. PRS alleles for retinal thickness were calculated using published summary statistics from a large-scale GWAS of inner retinal morphology using the OCT images of UK Biobank participants. RESULTS: The GWAS analyses did not identify a significant association after correction for multiple testing. Similarly, the gene-based and PRS analyses did not reveal a significant association that survived multiple testing. CONCLUSION: We set out to identify common genetic predictors for VGB induced ppRNFL thinning. Results suggest that large-effect common genetic predictors are unlikely to exist for ppRNFL thinning (as a marker of VAVFL). Sample size was a limitation of this study. However, further recruitment is a challenge as VGB is rarely used today because of this adverse reaction. Rare variants may be predictors of this adverse drug reaction and were not studied here

    Genome-wide microRNA profiling of plasma from three different animal models identifies biomarkers of temporal lobe epilepsy

    Get PDF
    Epilepsy diagnosis is complex, requires a team of specialists and relies on in-depth patient and family history, MRI-imaging and EEG monitoring. There is therefore an unmet clinical need for a non-invasive, molecular-based, biomarker to either predict the development of epilepsy or diagnose a patient with epilepsy who may not have had a witnessed seizure. Recent studies have demonstrated a role for microRNAs in the pathogenesis of epilepsy. MicroRNAs are short non-coding RNA molecules which negatively regulate gene expression, exerting profound influence on target pathways and cellular processes. The presence of microRNAs in biofluids, ease of detection, resistance to degradation and functional role in epilepsy render them excellent candidate biomarkers. Here we performed the first multi-model, genome-wide profiling of plasma microRNAs during epileptogenesis and in chronic temporal lobe epilepsy animals. From video-EEG monitored rats and mice we serially sampled blood samples and identified a set of dysregulated microRNAs comprising increased miR-93-5p, miR-142-5p, miR-182-5p, miR-199a-3p and decreased miR-574-3p during one or both phases. Validation studies found miR-93-5p, miR-199a-3p and miR-574-3p were also dysregulated in plasma from patients with intractable temporal lobe epilepsy. Treatment of mice with common anti-epileptic drugs did not alter the expression levels of any of the five miRNAs identified, however administration of an anti-epileptogenic microRNA treatment prevented dysregulation of several of these miRNAs. The miRNAs were detected within the Argonuate2-RISC complex from both neurons and microglia indicating these miRNA biomarker candidates can likely be traced back to specific brain cell types. The current studies identify additional circulating microRNA biomarkers of experimental and human epilepsy which may support diagnosis of temporal lobe epilepsy via a quick, cost-effective rapid molecular-based test

    A pharmacogenomic assessment of psychiatric adverse drug reactions to levetiracetam

    Get PDF
    OBJECTIVE: Levetiracetam (LEV) is an effective anti-seizure medicine, but 10-20% of people treated with LEV report psychiatric side-effects and up to 1% may have psychotic episodes. Pharmacogenomic predictors of these adverse drug reactions (ADRs) have yet to be identified. We sought to determine the contribution of both common and rare genetic variation to psychiatric and behavioural ADRs associated with LEV. METHODS: This case-control study compared cases of LEV-associated behavioural disorder (n=149) or psychotic reaction (n=37) to LEV-exposed people with no history of psychiatric ADRs (n=920). All samples were of European ancestry. We performed GWAS analysis comparing those with LEV ADRs to controls. We estimated the polygenic risk scores (PRS) for schizophrenia and compared cases with LEV-associated psychotic reaction to controls. Rare variant burden analysis was performed using exome sequence data of cases with psychotic reactions (n=18) and controls (n=122). RESULTS: Univariate GWAS found no significant associations with either LEV-ADR. PRS analysis showed that cases of LEV-associated psychotic reaction had an increased PRS for schizophrenia relative to controls (p = 0.0097, estimate = 0.4886). The rare-variant analysis found no evidence of an increased burden of rare genetic variants in people who had experienced LEV-associated psychotic reaction relative to controls. SIGNIFICANCE: The polygenic burden for schizophrenia is a risk factor for LEV-associated psychotic reaction. To assess the clinical utility of PRS as a predictor, it should be tested in an independent and ideally prospective cohort. Larger sample sizes are required for the identification of significant univariate common genetic signals or rare genetic signals associated with psychiatric LEV-ADRs

    MicroRNA-22 Controls Aberrant Neurogenesis and Changes in Neuronal Morphology After Status Epilepticus

    Get PDF
    Prolonged seizures (status epilepticus, SE) may drive hippocampal dysfunction and epileptogenesis, at least partly, through an elevation in neurogenesis, dysregulation of migration and aberrant dendritic arborization of newly-formed neurons. MicroRNA-22 was recently found to protect against the development of epileptic foci, but the mechanisms remain incompletely understood. Here, we investigated the contribution of microRNA-22 to SE-induced aberrant adult neurogenesis. SE was induced by intraamygdala microinjection of kainic acid (KA) to model unilateral hippocampal neuropathology in mice. MicroRNA-22 expression was suppressed using specific oligonucleotide inhibitors (antagomir-22) and newly-formed neurons were visualized using the thymidine analog iodo-deoxyuridine (IdU) and a green fluorescent protein (GFP)-expressing retrovirus to visualize the dendritic tree and synaptic spines. Using this approach, we quantified differences in the rate of neurogenesis and migration, the structure of the apical dendritic tree and density and morphology of dendritic spines in newly-formed neurons.SE resulted in an increased rate of hippocampal neurogenesis, including within the undamaged contralateral dentate gyrus (DG). Newly-formed neurons underwent aberrant migration, both within the granule cell layer and into ectopic sites. Inhibition of microRNA-22 exacerbated these changes. The dendritic diameter and the density and average volume of dendritic spines were unaffected by SE, but these parameters were all elevated in mice in which microRNA-22 was suppressed. MicroRNA-22 inhibition also reduced the length and complexity of the dendritic tree, independently of SE. These data indicate that microRNA-22 is an important regulator of morphogenesis of newly-formed neurons in adults and plays a role in supressing aberrant neurogenesis associated with SE
    corecore